Continual reduction of the average feature size found in integrated circuits and the concomitant changes in via and line resistivity, current density, and RC time delays have driven the gradual replacement of Al-based metallization to that based on Cu given its lower electrical resistivity and higher resistance to electromigration. Use of Cu metallization requires prevention of Cu migration into the underlying Si and SiO2, which can produce an increase in contact resistance, leaky pn junctions, variations in the barrier height, and contact layer embrittlement.1, 2 To avoid Cu-Si interaction an amorphous diffusion barrier layer at a thickness well below the via dimension is conformally deposited at low temperature. As these requirements become more demanding, a chemical deposition method will likely be required. WNxCy films grown by both chemical vapor deposition (CVD)3–4 and atomic layer deposition5 have shown promise as a suitable diffusion barrier material. Tungsten-based barriers have demonstrated improved adhesion to Cu and ease of chemical mechanical planarization as compared to the commonly used TaNx.6, 7

Experimental and Theoretical Methods

The homogeneous thermal decomposition of mixtures of the tungsten dimethylhydrazido complexes Cl4(RCN)W(NNMMe2) (1a: R=CH3; 1b: R=Ph), precursors for single source deposition of WNxCy, were investigated using a combination of experiments and calculations. Raman scattering studies were performed in an impinging-jet, up-flow, aerosol-assisted CVD reactor to identify reaction intermediates. Density Functional Theory calculations (B3LYP/LanL2DZ) were used to estimate Raman active frequencies and explore the reaction surface. Dimethylamine and methylmethyleneimine, products from N-N cleavage of the hydrazido ligand, were observed under deposition conditions and identified by comparison with previously reported Raman shifts and calculated frequencies.

The thermal decomposition pathways of the tungsten dimethylhydrazido complexes Cl4(RCN)W(NNMMe2) (1a: R=CH3; 1b: R=Ph), precursors for single source deposition of WNxCy, were investigated using a combination of experiments and calculations. Raman scattering studies were performed in an impinging-jet, up-flow, aerosol-assisted CVD reactor to identify reaction intermediates. Density Functional Theory calculations (B3LYP/LanL2DZ) were used to estimate Raman active frequencies and explore the reaction surface. Dimethylamine and methylmethyleneimine, products from N-N cleavage of the hydrazido ligand, were observed under deposition conditions and identified by comparison with previously reported Raman shifts and calculated frequencies. © 2012 The Electrochemical Society. [DOI: 10.1149/2.002206jes] All rights reserved.
elements. Crystallographic structure data of complex 1a collected at 173 K were used to obtain the starting geometry for calculations.

NMR kinetic studies of the dissociation of acetonitrile from 1a were conducted on a Varian Inova at 500 MHz. Compound 1a along with a molar equivalent of acetonitrile was dissolved in toluene-d₈. The ¹H spectrum displayed signals for 1a at 0.53 ppm and acetonitrile at 0.83 ppm with a ratio of 1:2.09.

For ESI-FTICR mass spectrometric analyzes solutions of 1b were prepared by dissolving 1a at a concentration of 100 μM in dry benzonitrile (purchased from Sigma-Aldrich as anhydrous grade in 99.9% purity and degassed by purging with Ar) in a dry-box under N₂. The complex was ionized (negative ionization mode) using a commercial electrospray ionization (ESI) source (Analytica of Branford, Branford; CT, USA) with a user-modified heated metal capillary modified with a conical capillary inlet set at a temperature of 125 °C. The ESI source was confined in a purge box maintained at a positive pressure of dry nitrogen gas. The complex was introduced in benzonitrile solution with no additional solvents (e.g., water, methanol). Mass spectra of the WCl₄N⁺ (nominal m/z 340) ions were obtained with a Bruker 47e FTICR mass spectrometer (Bruker Daltonics; Billerica, MA, USA) equipped with a 4.7 T superconducting magnet (Magnex Scientific Ltd.; Abington, UK) and Infinity cell.

Results and Discussion

Kinetics of acetonitrile dissociation from 1a.—To estimate the rate of loss of acetonitrile from 1a to form Cl₄W(NMe₂) (2) in the CVD reactor, the kinetics of acetonitrile exchange were determined via variable temperature NMR spectroscopy. The exchange rate k was determined by line shape analysis in the temperature interval 30 to 84 °C. A plot of ln(k/T) vs. 1/T (Figure 2) afforded an activation enthalpy of 23.0 ± 0.2 kcal/mol and an activation entropy of 28.8 ± 0.6 cal/mol·K, consistent with dissociative exchange. The corresponding Gibbs energy of activation is 14.4 kcal/mol, indicating that dissociation of acetonitrile from 1a should be facile under CVD conditions.

Based on these results it can be assumed that benzonitrile solutions of 1a have been converted almost completely to 1b by dissociative exchange of the acetonitrile ligand with solvent before the solution is introduced into the CVD reactor. Thus complex 1b can be considered as the predominant precursor species during deposition of WNₓCᵧ from solutions made from 1a. Because the rates for dissociation of acetonitrile and benzonitrile from transition metal complexes are similar, these experiments also establish that the coordinately unsaturated intermediate 2 will be readily accessible from either 1a or 1b under deposition conditions.

Ion cyclotron resonance experiments.—We have previously demonstrated that mass spectrometry can provide insight into the gas phase dissociation chemistry of the related tungsten imido complexes Cl₄(CH₃CN)W(NR) where R = Pr, Ph and allyl as well as the series of tungsten hydrazido complexes Cl₄(CH₃CN)W(NNR₂). The chemical ionization mass spectra of 1a, however, were anomalous in that the tungsten nitrido fragment Cl₄WN⁺, which is a marker for the ability of the imido complexes to deposit high quality films at low temperatures, could not be detected unambiguously in the spectra of 1a, despite the fact that 1a is an excellent CVD precursor for WNₓCᵧ.

To further investigate the gas phase ion dissociation pathways of 1a and their relevance to the deposition conditions, a mass spectrometric study with negative electrospray ionization and FTICR ion trapping and detection was carried out.

Figure 3 shows the ions detected (negative ion mode) following electrospray ionization of 1b prepared by dissolving 1a in

![Figure 3](image-url)

Figure 3. Mass spectrum of Cl₄(PhCN)W(NMe₂) (1b). Negative ions were generated through electrospray ionization (ESI) technique and detected using a Fourier-transform ion cyclotron resonance (FT-ICR) mass spectrometer. The most abundant peak in the array was a combination of the ions WCl₄N⁻ and WCl₄O⁻, in a ratio of 21:79. Inset: comparison of experimental intensities to calculated intensities using the 21:79 ratio determined through least squares analysis.
benzonitrile. The envelope of peaks centered about m/z 340 corresponds to WCl₄N⁻, and a second, lower intensity, envelope of peaks centered about m/z 323 corresponds to WO₂Cl₃⁻. Observing the latter oxidation products suggested that the major peaks in the mass spectrum might represent overlapping WCl₄N⁻ and WCl₄O⁻ distributions, which are displaced by 2 amu. Comparison of the observed mass spectrum with simulations based on mixtures of the calculated distributions of the nitrido- and oxo- species revealed that the major envelope of peaks in Figure 3 is actually composed of 21% WCl₄N⁻ and 79% WCl₄O⁻ (Figure 3, inset). Although the configuration of the sample inlet resulted in formation of the oxo anion WCl₄O⁻ due to unavoidable brief exposure of the samples to the atmosphere, the observation of the nitrido cleavage product provides evidence of N–N bond cleavage of the hydrazido ligand of 1b in the gas phase under mass spectrometry conditions.

In situ Raman experiments.—To investigate the thermal decomposition of hydrazido complex 1b, in situ Raman experiments were performed using a susceptor set point temperature of 850°C. Figure 4 shows the observed Raman bands along the centerline at seven distances below the heated susceptor (labeled a-g in Figure 4). To minimize the influence of blackbody radiation, Raman signals of the blank reactor were recorded and subtracted for each measurement position. For the results shown in panels A and D, each spectrum was deconvolved using the Gaussian-Lorentzian peak shape routine in the commercial software package PeakFIT (v4.12). An example deconvolution of spectrum (g) from Panel A (Figure 4) is shown in Figure 5A. Measurements on neat benzonitrile provided frequency values for the C–H in plane bending coupled with C–CN stretching (1181 cm⁻¹) and the C–H in plane bending (1197 cm⁻¹) modes in this region. Other modes detected in this region include C–CN stretching for complex 1b (1178 cm⁻¹), W≡N₁ stretching with methyl scissoring for complex 2 Cl₄W(NNMe₂) (1189 cm⁻¹), and C-Ph stretching, W–N₁ and W–N₃ stretching with C–N–C torsion for complex 1b (1193 cm⁻¹) with the assignments based on DFT calculations. Estimation of the local gas phase temperature along the reactor centerline was made by analysis of the N₂ rotational state distribution with accuracy 20 to 30°C in the temperature range of interest. The measured temperature is plotted in Figures 5B and 5C as a function of reactor position and the position associated with each spectrum listed in Figure 4. The concentration profiles were obtained as shown in Figures 5B and 5C. In Figure 5B, detected species concentrations are shown in relative concentration because the Raman scattering cross-section is not available. Since the inlet concentration of benzonitrile is known the Raman scattering cross-section was estimated and the concentration profiles indicated in Figure 5C estimated values.
The results shown in panel D (Figure 4) support the presence of two C≡N vibrational modes. It is noted, however, that since this region also includes signal from the periodic vibration of excited N$_2$, these two vibrations can be extracted from the spectra in panel D by comparison with the gas-phase data from authentic benzonitrile. Peak deconvolution of spectrum g in Panel D (Figure 4) reveals six components: four peaks associated with the N$_2$ vibrational mode and two with C≡N stretching (Figure 6A). Examination of the spectra (a) from additional N$_2$ only experiment with (b), (c) and (d) reveals the four periodic N$_2$ vibrational peaks (spectrum a) at 2221, 2229, 2237, and 2245 cm$^{-1}$. Two additional C≡N stretching frequencies are detected at 2234 and 2241 cm$^{-1}$ as shown in Figure 6B (spectra b, c, and d). These last two frequencies lie in the reported ranges for ν$_{as}$ of benzonitrile as observed in gas-phase Raman experiments$^{27-29}$ and the origin of the second band under our experimental conditions is not yet understood.

To probe for additional Raman active species that were not detected in the gas-phase experiments, supplementary liquid phase Raman experiments were performed for 1b generated by dissolving 1a in benzonitrile. Using a standard liquid chamber, the 532.08 nm line of a Nd:YAG solid-state laser at 0.1 W was used to excite neat benzonitrile and the vibrational Raman excitation lines were recorded in the range 100\sim4000 cm$^{-1}$. Solution phase Raman spectra of 1b (the solutions are prepared as 0.0174 mol/L 1a in benzonitrile) and pure benzonitrile were measured and spectra for three selected wave number ranges are shown in Figure 7. It is evident that the higher liquid phase density affords strong scattering intensity to produce very good signal to noise (S/N) ratio. It is also evident that spectra for the liquid samples show features not detected in the gas-phase experiments. Specifically, the three spectra show peaks at 361 cm$^{-1}$, associated with the W–Cl$_4$ vibrational mode, 1133 cm$^{-1}$, assigned to the C–N–C asymmetric vibrational mode, and 1396 cm$^{-1}$ assigned to the symmetrical umbrella mode of two terminal CH$_3$ groups. These Raman shifts were not detected in the gas-phase experiments and more detailed experiments are in progress.

DFT calculations.—DFT calculations were performed to better interpret the experimental results and evaluate possible mechanistic steps in the thermal decomposition of 1b. We have reported further comparison of DFT calculations to experimental results for aryl- and alkylimido precursors.30 The initial calculations were a geometry optimization (B3LYP/LanL2DZ) using experimentally determined bond lengths and angles for 1a as a test of the computational method (Figure 8). Although the results of the NMR study indicate that 1a will

Figure 6. Peak deconvolution results: (A) spectrum g in panel D of Figure 4 and (B) N$_2$ vibrational bands from additional experiment (spectrum a) and peaks associated with N$_2$ vibrational modes and with C≡N stretching frequencies (spectra b, c, and d are the same as spectra g, d, and a of panel D in Figure 4, respectively).

Figure 7. Liquid Raman spectra of 1b in benzonitrile solution (solid line) compared to pure liquid benzonitrile (dashed line). Note that the red spectra are intensity shifted for clarity.
have been converted to 1b before it is injected into the reactor, only the substituent of the nitrile ligand is different and the critical bond lengths and bond angles of 1a should carry over to 1b. The computationally optimized geometry of 1a (Figure 8) is summarized in Table I along with experimental data and previous calculations using a split valence basis set. For most of the calculated values in Table I, the B3LYP/LanL2DZ geometry optimization more closely approximates the experimental solid state structure.

Since the dissociation of acetonitrile from 1a was observed to be facile near room temperature, calculations assumed that loss of the nitrile was a rapid first step in decomposition of 1a in the reactor. Further calculations on possible intermediates thus began with Cl4W(NNMe2)-, the product of acetonitrile loss from 1a (or loss of benzonitrile from 1b). The experimental observation of dimethylamine and methylmethyleneimine among the decomposition products suggest two possible dissociative reactions of 2 as depicted in Scheme 1. We have considered both dissociation reactions since AACVD from 1b involves high deposition temperature. Values for the enthalpy and Gibbs energy of W–N1 and N1–N2 dissociation (Table II) were obtained using statistical thermodynamics. Homolysis of W–N1 affords open shell products and the spin states were set accordingly during calculations. In the case of N1–N2 homolysis, the products are doublets. The calculated W–N1 bond dissociation enthalpy is significantly higher than the N1–N2 dissociation energy over the 298 to 900 K temperature range. These bond strengths can be viewed in terms of the limiting resonance structures A and B (Figure 9). Crystallographic data are consistent with representation B being the major contributor, which is in accord with calculated N1–N2 BDE values that are higher than the experimental value for free 1,1-dimethylhydrazine (49.6 kcal/mol).

The dissociation of benzonitrile to form Cl4W(NNMe2)- (2) (Scheme 2) is postulated to be the first step in thermal decomposition of 1b on the basis of the nitrile dissociation rates for conversion of 1a to 1b. The assumed parallel between the reactivity of 1a and

Table I. Experimental and Computationally Optimized Bond Lengths (Å) and Bond Angles (°) for Complex 1a.

<table>
<thead>
<tr>
<th>Bond</th>
<th>Experimental</th>
<th>Split Basis Set</th>
<th>This Work</th>
</tr>
</thead>
<tbody>
<tr>
<td>W1-N1</td>
<td>1.769(5)</td>
<td>1.749</td>
<td>1.757</td>
</tr>
<tr>
<td>W1-N3</td>
<td>2.224(7)</td>
<td>2.268</td>
<td>2.220</td>
</tr>
<tr>
<td>W1-Cl</td>
<td>2.347(16)</td>
<td>2.388</td>
<td>2.429</td>
</tr>
<tr>
<td>N1-N2</td>
<td>1.271(8)</td>
<td>1.289</td>
<td>1.283</td>
</tr>
<tr>
<td>N2-Cl</td>
<td>1.438(7)</td>
<td>1.467</td>
<td>1.478</td>
</tr>
<tr>
<td>N1-W1-Cl</td>
<td>95.9(4)</td>
<td>96.8</td>
<td>96.2</td>
</tr>
<tr>
<td>N3-W1-Cl</td>
<td>84.07(4)</td>
<td>83.24</td>
<td>83.75</td>
</tr>
<tr>
<td>N2-N1-W1</td>
<td>180.0(0)</td>
<td>178.0</td>
<td>179.6</td>
</tr>
</tbody>
</table>

* a B3LYP/LanL2DZ for W, 6-311G for other elements,
* b B3LYP/LanL2DZ for all elements

Table II. Calculated Bond Dissociation Enthalpy (ΔH°) and Gibbs Energy Change (ΔG°) for the W–N1 and N1–N2 Bonds.

<table>
<thead>
<tr>
<th>Bond</th>
<th>ΔH° (298 K)</th>
<th>ΔG° (298 K)</th>
<th>ΔH° (900 K)</th>
<th>ΔG° (900 K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>W–N1</td>
<td>113.1</td>
<td>101.0</td>
<td>111.4</td>
<td>77.8</td>
</tr>
<tr>
<td>N1–N2</td>
<td>88.0</td>
<td>73.2</td>
<td>86.9</td>
<td>43.7</td>
</tr>
</tbody>
</table>

* a B3LYP/LanL2DZ

Figure 8. Computationally optimized geometry of 1a.

Figure 9. Limiting resonance structures of complexes 1a and 1b.

Scheme 1. Products of cleavage of the W–N1 and N1–N2 bonds of complex 2. Gibbs energy values (ΔG°) are in kcal/mol.
the imido complex Cl₄(CH₃CN)W(NPr) is consistent with computational assessment of the bond strength between W and N² using the Wiberg bond index in the natural bond orbital (NBO) analysis of complex 1a. As shown in Figure 10, the coordinate covalent bond of the acetonitrile ligand with W has the weakest bond order (0.3310).

Dimethylaminyl radical (3)³³–³⁵ and 1,1-dimethyldiazene (5) have been previously generated by other methods and their reactions have been reported. Dimerization of 1,1-alkyldiazenes is known to form complexes of the Wiberg bond index in the natural bond orbital (NBO) analysis of complex 1a. As shown in Figure 10, the coordinate covalent bond of the acetonitrile ligand with W has the weakest bond order (0.3310).

Dimethylaminyl radical (3)³³–³⁵ and 1,1-dimethyldiazene (5) have been previously generated by other methods and their reactions have been reported. Dimerization of 1,1-alkyldiazenes is known to form complexes of the Wiberg bond index in the natural bond orbital (NBO) analysis of complex 1a. As shown in Figure 10, the coordinate covalent bond of the acetonitrile ligand with W has the weakest bond order (0.3310).

1a

1b

\[\Delta G^0 = 13.18 \]

Comparison of experimental results with DFT calculations.— The calculated vibrational frequencies can be correlated to products postulated in the proposed decomposition mechanisms (Schemes 1 and 4a). Calculated and corrected Raman active stretching frequencies with experimental values for all compounds including the gas-phase authentic sample of benzonitrile are listed in Table III.

Assignments for 9 of the observed bands attributed to benzonitrile (462, 762, 1003, 1181, 2234, 3077, 3128, 3175 cm⁻¹) were derived from gas phase benzonitrile Raman spectra and deconvolution data as well as DFT calculations. The reported Raman bands of 1240 and 3377 cm⁻¹ of gas-phase dimethylamine⁴¹ and DFT results were used for assigning 1247 and 3377 cm⁻¹ to the CH₃ rocking and N–H stretching motions in dimethylamine, respectively. In addition, 1638 cm⁻¹ was assigned to C=N stretching of methylmethyleneimine (8). This assignment is supported by IR data⁴⁰ and the Raman characteristic group frequency. Given that dimethylamine (9) and imine 8 would ultimately result from homolysis of the N¹–N² bond followed by disproportionation of radical 3, observation of these products is consistent with N¹–N² cleavage. The possibility of W–N¹ dissociation, however, cannot be excluded since this reaction can produce the same radical intermediate (3) through tetramethyltetrazene formation (Scheme 4).

The peak at 3426 cm⁻¹ is tentatively assigned to the N–H stretching mode of HNWCl₄ (14) based on the predicted gas phase reaction chemistry and the experimentally observed N–H vibrational frequencies of W(VI) model compounds with imido (NH) and amido (NH₂) ligands.⁴⁶ The N–N cleavage reaction (Scheme 1) would produce the nitrogen-centered radical -NWCl₄ (4) as the inorganic product. Subsequent abstraction of a hydrogen atom by 4 would afford the W(VI) parent imido complex 14. The N₁–H bond of 14 would be expected to have a high bond dissociation energy, making hydrogen abstraction from several species in the reactor energetically favorable.⁴⁷

Estimate of aerosol evaporation time.— The analysis of this study assumes that the decomposition reactions that occur are for inlet species 1b, benzonitrile, and acetonitrile, and that they occur in the gas phase along the probed centerline of the reactor. The aerosol assisted delivery of the low volatility precursor complicates the analysis of the experimental results since the precursor is initially in a liquid solution but quickly evolves to a gas mixture due to the high vapor pressure of the solvent. It is of interest therefore to estimate the position at which it is expected to be formed in similar quantities.⁴⁰ In addition to these reactions, dimethylaminyl radical undergoes dissociation into methylnitrene and methyl radical (Scheme 4, path b). Subsequent hydrogen shift in methyl nitrene affords methyleneimine⁴¹–⁴³ (Scheme 4, path c).

Comparison of experimental results with DFT calculations.— The calculated vibrational frequencies can be correlated to products postulated in the proposed decomposition mechanisms (Schemes 1 and 4a). Calculated and corrected Raman active stretching frequencies with experimental values for all compounds including the gas-phase authentic sample of benzonitrile are listed in Table III.

Assignments for 9 of the observed bands attributed to benzonitrile (462, 762, 1003, 1181, 2234, 3077, 3128, 3175 cm⁻¹) were derived from gas phase benzonitrile Raman spectra and deconvolution data as well as DFT calculations. The reported Raman bands of 1240 and 3377 cm⁻¹ of gas-phase dimethylamine⁴¹ and DFT results were used for assigning 1247 and 3377 cm⁻¹ to the CH₃ rocking and N–H stretching motions in dimethylamine, respectively. In addition, 1638 cm⁻¹ was assigned to C=N stretching of methylmethyleneimine (8). This assignment is supported by IR data⁴⁰ and the Raman characteristic group frequency. Given that dimethylamine (9) and imine 8 would ultimately result from homolysis of the N¹–N² bond followed by disproportionation of radical 3, observation of these products is consistent with N¹–N² cleavage. The possibility of W–N¹ dissociation, however, cannot be excluded since this reaction can produce the same radical intermediate (3) through tetramethyltetrazene formation (Scheme 4).

The peak at 3426 cm⁻¹ is tentatively assigned to the N–H stretching mode of HNWCl₄ (14) based on the predicted gas phase reaction chemistry and the experimentally observed N–H vibrational frequencies of W(VI) model compounds with imido (NH) and amido (NH₂) ligands.⁴⁶ The N–N cleavage reaction (Scheme 1) would produce the nitrogen-centered radical -NWCl₄ (4) as the inorganic product. Subsequent abstraction of a hydrogen atom by 4 would afford the W(VI) parent imido complex 14. The N₁–H bond of 14 would be expected to have a high bond dissociation energy, making hydrogen abstraction from several species in the reactor energetically favorable.⁴⁷

Figure 10. Wiberg bond indexes for 1a and 1b.

Expected of aerosol evaporation time.— The analysis of this study assumes that the decomposition reactions that occur are for inlet species 1b, benzonitrile, and acetonitrile, and that they occur in the gas phase along the probed centerline of the reactor. The aerosol assisted delivery of the low volatility precursor complicates the analysis of the experimental results since the precursor is initially in a liquid solution but quickly evolves to a gas mixture due to the high vapor pressure of the solvent. It is of interest therefore to estimate the position at which
Scheme 3. Production of dimethylaminyl radical (3) after W–N₁ cleavage to form 5. Gibbs energy values are in kcal/mol.

{Chemical structures and energy values are shown in the figure.}

ΔG° = 51.06
ΔG° = −44.23
ΔG° = −21.89
ΔG° = −88.83

ΔG‡ = 49.42

Scheme 4. Known reactions of dimethylaminyl radicals and their calculated (B3LYP/LanL2DZ) reaction energies at 298 K. Gibbs energy values are in kcal/mol.

Table III. Calculated and Corrected Raman Active Stretching Frequencies.

<table>
<thead>
<tr>
<th>Molecule</th>
<th>Experimental</th>
<th>Calculated</th>
<th>Corrected</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>BN</td>
<td>462</td>
<td>466</td>
<td>461</td>
<td>Ph ring stretching</td>
</tr>
<tr>
<td>BN</td>
<td>762</td>
<td>769</td>
<td>761</td>
<td>Ph ring stretching</td>
</tr>
<tr>
<td>BN</td>
<td>1003</td>
<td>1025</td>
<td>1005</td>
<td>Ph ring breathing</td>
</tr>
<tr>
<td>1b</td>
<td>1177</td>
<td>1226</td>
<td>1177</td>
<td>C–H in plane bend</td>
</tr>
<tr>
<td>BN</td>
<td>1181</td>
<td>1236</td>
<td>1187</td>
<td>C–H in plane bend + C-CN vibration</td>
</tr>
<tr>
<td>2</td>
<td>1189</td>
<td>1246</td>
<td>1196</td>
<td>CH₃ scissoring + W≡N stretching</td>
</tr>
<tr>
<td>1b</td>
<td>1193</td>
<td>1243</td>
<td>1193</td>
<td>C-Ph stretching + N3-W-N1 stretching + C–N–C torsion</td>
</tr>
<tr>
<td>BN</td>
<td>1197</td>
<td>1248</td>
<td>1198</td>
<td>C–H in plane bend</td>
</tr>
<tr>
<td>9</td>
<td>1247</td>
<td>1279</td>
<td>1228</td>
<td>CH₂ rocking</td>
</tr>
<tr>
<td>8</td>
<td>1638</td>
<td>1696</td>
<td>1638</td>
<td>C≡N stretching</td>
</tr>
<tr>
<td></td>
<td>1708</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BN</td>
<td>2234</td>
<td>2335</td>
<td>2237</td>
<td>C≡N stretching</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C≡N stretching in BN?</td>
</tr>
<tr>
<td>BN</td>
<td>2516</td>
<td>2547</td>
<td>2580</td>
<td>CH₃ symmetric stretching (-N(CH₃)₂; aromatics)</td>
</tr>
<tr>
<td>BN</td>
<td>3077</td>
<td>3142</td>
<td>3079</td>
<td>C-H asymmetric stretching</td>
</tr>
<tr>
<td>BN</td>
<td>3128</td>
<td>3192</td>
<td>3128</td>
<td>C-H asymmetric stretching</td>
</tr>
<tr>
<td>BN</td>
<td>3175</td>
<td>3238</td>
<td>3173</td>
<td>NH stretching</td>
</tr>
<tr>
<td>9</td>
<td>3377</td>
<td></td>
<td></td>
<td>NH stretching</td>
</tr>
<tr>
<td>14</td>
<td>3426</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
the aerosol can be assumed to be sufficiently evaporated and thus not affect the measurement.

To investigate the homogeneity of the introduced precursor, a model for droplet formation and evaporation was used to estimate the droplet distribution and time for evaporation. The results were then compared to experiment. The initial droplet size produced by the nebulizer was first estimated using Lang’s correlation.48 This model assumes each droplet generated by the ultrasonic nebulizer is a homogeneous sphere. The droplet diameter estimated for the system used in this study is ca. 2.7 μm. Next, the rate of evaporation was estimated by modeling the evaporation process for a droplet of pure benzonitrile in a laminar carrier gas. Briefly, the energy balance equation for a benzonitrile droplet gives:

\[N_e = \frac{h_f A \Delta T}{\lambda} \]

where \(N_e \), \(h_f \), \(A \), \(\Delta T \) and \(\lambda \) denote the solvent evaporation rate, heat transfer coefficient across the liquid-gas, total droplet surface area introduced to the reactor (6.18 × 10^{-3} m^2), temperature difference between droplet surface and ambient, and latent heat of vaporization (3.67 × 10^4 J/kg), respectively. To estimate the value of the heat transfer coefficient, the Nusselt number, \(Nu \), is calculated for a liquid droplet in a flowing gas, using the empirical relation:

\[Nu = 2.0 + 0.6 Re^{0.5} Pr^{0.33} \]

where \(Re \) is the Reynolds number and \(Pr \) is the Prandtl number. Using this equation, the heat transfer coefficient, \(h_f \), is estimated as:

\[h_f \frac{D}{k_d} = 2.0 + 0.6 \left(\frac{D \cdot \rho \cdot \nu}{\mu} \right)^{0.5} \left(\frac{C_p \cdot \mu}{k_d} \right)^{0.13} \]

where \(D \) and \(k_d \) are the droplet diameter and liquid thermal conductivity (0.1317 W/mK at 366.5 K). In addition, \(\nu \), \(\rho \), \(\mu \), and \(C_p \) denote mean fluid velocity (2.5 cm/s), density (1.03 g/cm^3), viscosity (1.25 × 10^{-3} Pa·s), and specific heat capacity at constant pressure (0.4369 J/kg K), respectively. With the property values mentioned above, \(Re \) and \(Pr \) have the value of 5.45 × 10^{-5} and 3.81, respectively. From Eq. 3, the heat transfer coefficient is calculated as 9.79 × 10^4 J/m^2·K.

The value of the temperature difference between the injected droplet and the gas ambient was assumed to be 10 K since the drop size is relatively small. Eq. 1 gives the value of the solvent evaporation rate as 1.65 g/s and applying this model to the reaction conditions gives a drop evaporation time of only 17 ms for a droplet of mean diameter 2.7 μm. Using the inlet velocity of 2.5 cm/s velocity, the distance traveled by this droplet for full evaporation is 0.43 mm, which is well before the measurement zone.

The droplet diameter is predicted to show a normal distribution with standard deviation, \(\sigma \), as follows:49

\[\sigma = 4.6 \times 10^{-5} \left(\frac{\rho}{f^{0.41} \cdot \tau^{0.18}} \right) \]

where \(f \) is the nebulizer frequency (1.44 MHz), \(\tau \) is the surface tension (0.041 N/m) and \(\mu \) is the dynamic viscosity (1.25 × 10^{-3} Pa·s). Using these values the standard deviation of drop diameter, \(\sigma \), is 5.0 μm. This implies that for a droplet at 2σ diameter (17.7 μm) only 1.8 particles are present in the reactor volume and will be evaporated at 2.0 mm position in the reactor.

There is experimental evidence to support this conclusion. Frolov et al.50 reported experimental results supported by calculations that show 70 μm n-tetradecane droplets vaporize in 70 ms at a liquid surface temperature of 293.15 K and a gas temperature of 573.15 K. It is noted that n-tetradecane has a higher boiling temperature (526 K) than benzonitrile (464 K) and their droplet diameter was approximately 4 times larger than that in this study. As further evidence, the spectral positions of the strongest phenyl ring breathing mode of benzonitrile were carefully measured. No displacement of peak positions, as would be expected between liquid and gas phase samples, was detected along the reactor centerline as shown in Figure 11. Based on the modeling results, comparison to experiment using a less volatile solvent, and the lack of a measurable peak shift in the phenyl ring breathing mode, the assumption of homogeneous gas-phase reaction in the whole CVD reactor is substantiated.

Conclusions

The decomposition pathways of the dimethylhydrazido tungsten complexes (RCN)Cl,W(NMe₂)₂ (1a: R = CH₃; 1b: R = Ph) were investigated using Raman spectroscopy, NMR kinetics, ion cyclotron resonance and DFT calculations at the B3LYP/LanL2DZ level of theory. The rate of loss of acetonitrile from 1a was determined via variable temperature NMR spectroscopy to yield an activation enthalpy of 23.0 ± 0.2 kcal/mol and an activation entropy of 28.8 ± 0.6 cal/mol·K in the temperature range 50 to 84 °C. These results indicate that acetonitrile dissociation is rapid and the precursor injected from benzonitrile solutions of 1a is thus predominantly 1b, which rapidly dissociates to 2. Raman scattering experiments in the up-flow, cold-wall aerosol-assisted CVD reactor identified peaks consistent with methylmethyleneimine (8), dimethylamine (9), and HNWC₄ (14). These frequencies were assigned using gas-phase DFT calculations and literature data. The bond cleavages of both W–N₁ and N₁–N₂ are possible, although the calculated bond strength of W–N₁ is higher than that of N₁–N₂. Detection of methylmethyleneimine (8) and dimethylamine (9) is consistent with homolysis of the N₁–N₂ bond followed by disproportionation of radical 3, however, this radical can also be produced by W–N₁ dissociation. DFT calculations suggested that homolysis of the N₁–N₂ bond can lead to HNWC₄ (14) after disproportionation of the resulting radicals. Tentative assignment of the peak at 3426 cm⁻¹ to the N–H stretching mode of HNWC₄ (14) evidences N₁–N₂ bond homolysis, consistent with experimental evidence on the deposition of films from the related tungsten imido complexes Cl₃(CH₂-CN)W(NR) where R = Ph and allyl.3, 24, 25 Finally, homogeneity of introduced precursor was confirmed by conducting droplet evaporation analysis based on the analytical and spectroscopic evidences.

Acknowledgments

We thank the National Science Foundation for support under NSF grant CHE-0911640. S.Z.H thanks the Arnold and Mabel Beckman Foundation for support of her undergraduate research through a
Beckman Scholar Award. M.E. thanks the UF HHMI Science for Life program for support of his undergraduate research.

References