Faculty and Research Areas

Henry S. Ashbaugh • Classical Thermodynamics and Statistical Mechanics • Molecular Simulation • Solution Thermodynamics • Multi-Scale Modeling of Self-Assembly and Nanostructured Materials

Daniel C.R. DeKee • Rheology of Natural and Synthetic Polymers • Constitutive Equations • Transport Phenomena and Applied Mathematics

W T. Godhey • Gene Delivery • Cellular Engineering • Molecular Aspects of Nonviral Transfection • Biomaterials

Vijay T. John • Biomimetic and Nanostructured Materials • Interfacial Phenomena • Polymer-Ceramic Composites • Surfactant Science

Victor J. Law • Modeling Environmental Systems • Nonlinear Optimization and Regression • Transport Phenomena • Numerical Methods

Brian S. Mitchell • Fiber Technology • Materials Processing • Composites

Kim C. O'Connor • Animal-Cell Technology • Organ/Tissue Regeneration • Recombinant Protein Expression

Kyriakos D. Papadopoulos • Colloid Stability • Coagulation • Transport of Multi-Phase Systems Through Porous Media • Colloidal Interactions

Noshir S. Pesika • Nanomaterial Synthesis and Characterization • Surface Functionalization and Rheology • Bio-inspired Materials • Surface Science; Electrochemistry.

Lawrence R. Pratt • Statistical Mechanics and Thermodynamics • Theory of Liquids and Solutions • Molecular Biology • Electrochemical Capacitors and Electrical Energy Storage Systems • Statistical Methods in Computational Science, Especially Molecular Simulation

Anne Skaja Robinson • Molecular and cellular engineering for improving protein production, developing cellular biosensors, and for understanding and control of human disease

For Additional Information, Please Contact

Graduate Advisor
Department of Chemical and Biomolecular Engineering
Tulane University • New Orleans, LA 70118
Phone (504) 865-5772 • E-mail npesika@tulane.edu