LEHIGH UNIVERSITY.

Synergistic, interdisciplinary research in...

Biochemical Engineering • Catalytic Science & Reaction Engineering
Environmental Engineering • Interfacial Transport • Materials Synthesis
Characterization & Processing • Microelectronics Processing
Polymer Science & Engineering • Process Modeling & Control
Two-Phase Flow & Heat Transfer

Leading to M.S., M.E., and Ph.D. degrees in Chemical Engineering,
Biological Chemical Engineering and Polymer Science and Engineering

OUR FACULTY

Bryan W. Berger, University of Delaware
membrane biophysics • protein engineering • surfactant science
• signal transduction

Philip A. Blythe, University of Manchester
fluid mechanics • heat transfer • applied mathematics

Angela C. Brown, Drexel University
biological colloids • lipid-protein interactions • membrane
biophysics • microbial pathogenesis

Hugo S. Caram, University of Minnesota
high temperature processes and materials • environmental
processes • reaction engineering

Manoj K. Chaudhury, SUNY - Buffalo
adhesion • thin films • surface chemistry

Mohamed S. El-Aasser, McGill University
polymer colloids and films • emulsion copolymerization •
polymer synthesis and characterization

Alice P. Gast, Princeton University
complex fluids • colloids • proteins • interfaces

James F. Gilchrist, Northwestern University
particle self-organization • mixing • microfluidics

Vincent G. Grassi II, Lehigh University
process systems engineering

Lori Herz, Rutgers University
cell culture and fermentation • pharmaceutical process
development and manufacturing

James T. Hsu, Northwestern University
bioseparation • applied recombinant DNA technology

Anand Jagota, Cornell University
biomimetics • mechanics • adhesion • biomolecule-materials
interactions

Andrew Klein, North Carolina State University
emulsion polymerization • colloidal and surface effects in
polymerization

Christopher J. Kiely, Bristol University
catalyst materials • nanoparticle self-assembly • carbonaceous
materials • heteroepitaxial interface structures

Mayuresh V. Kothare, California Institute of Technology
model predictive control • constrained control • microchemical
systems

William L. Luyben, University of Delaware
process design and control • distillation

Anthony J. McHugh, University of Delaware
polymer rheology and rheo-optics • polymer processing and
modeling • membrane formation • drug delivery

Steven McIntosh, University of Pennsylvania
fuel cells • solid state ionic • heterogeneous catalysis • functional
materials • electrochemistry

Jeetain Mittal, University of Texas
protein folding • macromolecular crowding • hydrophobic effects •
nanoscale transport

Susan F. Perry, Pennsylvania State University
cell adhesion and migration • cellular biomechanics

Kelly M. Schultz, University of Delaware
polymer rheology and micro rheology • polymer physics •
biomaterial and hydrogel characterization • three-dimensional cell
culture

Arup K. Sengupta, University of Houston
use of adsorbents • ion exchange • reactive polymers •
membranes in environmental pollution

Cesar A. Silebi, Lehigh University
separation of colloidal particles • electrophoresis • mass transfer

Shivaji Sircar, University of Pennsylvania
adsorption • gas and liquid separation

Mark A. Snyder, University of Delaware
inorganic nanoparticles and porous thin films •
membrane separations • multiscale modeling

Kemal Tuzla, Istanbul Technical University
heat transfer • two-phase flows • fluidization • thermal energy
storage

Israel E. Wachs, Stanford University
materials characterization • surface chemistry • heterogeneous
catalysis • environmental catalysis

An application and additional information may be obtained by writing to:
Dr. Jeetain Mittal or Dr. Steve McIntosh - Co-Chairs, Graduate Admissions Committee
Department of Chemical Engineering, Lehigh University • 111 Research Drive, Iacocca Hall • Bethlehem, PA 18015
Fax: (610) 758-4261 • Email: incheqs@lehigh.edu • Web: www.che.lehigh.edu